
ADAS

By Steven A. Bailey

NASA
June 29, 1998

2

Table of Contents

INTRODUCTION... 3

PURPOSE .. 4

BASIC DESIGN .. 4

ELECTRONICS.. 4

SOFTWARE.. 6

SOURCE CODE.. 21

SCHEMATICS.. 40

ANALOG SECTION .. 43

ANALOG TUNING .. 54

PRINTED CIRCUIT BOARD ... 57

SPECTRAL OUTPUT.. 58

3

Introduction

The ADAS (Airborne Diode Array Spectrometer) is a small 256 channel visible
spectrometer covering 400 to 720 nm. The main optics consists of a 4 inch Newtonian
telescope followed by a fiber-optic light guide which feeds a diffraction grating. The
spectrometer sensor is a solid-state diode array in the form of a 22 pin DIP. It rests on a
PC board which is mounted at the focal point below the diffraction grating. See Figure 1
for simplified view of the system.

D
io

de
 A

rr
ay Em bedded

D ata
Ac quis ition

Sys tem R
S

-2
32

D
iff

ra
c t

.
G

ra
tin

g

T elesc ope

Fiber O ptic Cable

PC

Figure 1

ADAS is a system that was initially developed in the mid-1980s. It started as a
commercial spectrometer system that included the sensor, optics, and electronics. Its
electronics were modified and the system performed reasonably well. Since then, ADAS
has evolved over the years to its current state which is a commercial sensor board
surrounded by custom built optics. This version has worked quite well, but has some
inherent limitations and design flaws.

The current system contains all analog circuitry on a PC board. The signals that drive or
'clock' this system must reside external to the board. Also, analog to digital conversion
must be external to the board. These two factors cause an equal number of problems. An
external computer (like a PC) must be available to both 'clock' the sensor board, perform
the AD conversion, and record data. Due to stringent 'clocking' demands, this requires a
single PC which is not available for any other duties. In fact, the PC causes a measurable
amount of 'clock' jitter to the sensor. This results in inconsistent integration times

4

between sensor channels. Long cable lengths between the sensor board and the PC also
cause additional noise on the analog video line.

Purpose

My purpose on this project was to start from scratch and design a new autonomous sensor
board. It would contain the sensor, a high speed 12-bit ADC, a microcontroller, and all
supporting analog and digital circuitry. This system would generate all clocking signals
itself, perform AD conversions, and buffer data. Digital data would pass from the sensor
board to any external computer that had an RS232 port.

This design would remove the timing demands from an external PC. This way, more
than one external spectrometer could be tied to a single PC provided there are enough
RS232 ports. There are plans to plug 3 of these spectrometers into a single PC running
LINUX fitted with a multichannel RS232 board.

This design also removes the analog signal noise that was a problem in all previous
designs. Since all analog conditioning, amplification, and digitization are onboard the
new sensor board, there is no opportunity for noise interjection into the raw signal.

Basic Design

The design of the hardware is straight forward. Essentially, a microcontroller is the heart
of the system. It resides on the new spectrometer board and basically has 3 functions.

First of all, this microcontroller 'clocks' the diode array at some given rate and then
triggers the ADC to perform a 12-bit conversion. This cycle occurs 256 times…once for
each channel of the sensor. This data is saved in a 2K static ram (sram).

Data that is being buffered in sram is exported or transmitted out the RS232 port at a rate
of 38,400 baud. This rate supports a maximum video frame rate of 5 spectra per second.

Finally, single byte commands are received from an external PC. These commands
instruct the microcontroller to perform things like open or close the shutter, record data at
'some' frame rate, change the exposure time, etc. See Figure 2 for block diagram of the
spectrometer board.

Electronics

 A 16C65A Microchip microcontroller was chosen for several reasons. First, it has a very
short instruction time (200ns). This short time is needed because the diode array and

5

ADC would be 'clocked' programmatically from the microcontroller. This way, all timing
signals are easily synchronized.

M ic ro c o ntro l le r
2 K

Sram

R S2 3 2

1 2 B it AD C

D io de Ar ray

4 S tage
Am pli f ie r

Figure 2

Second, the 16C65A has ample data/IO pins which can each source 20 ma or sink 25 ma.
More pins means fewer external parts needed when creating a data/address bus. The
large power available per pin means little or no buffering is needed when interfacing to
analog components.

The EG&G Reticon 256 channel TB series diode array was chosen as the sensor. An
older version has been used with success, so it was a natural progression to choose the
state-of-the-art from this company. This sensor has a larger surface area than past
versions, so shorter integration times would be the result. Shorter integration times mean
faster exposure times leading to sharper ocean color spectra.

The Maxim Max120 12-bit ADC was chosen for its speed. It has a maximum conversion
time of 1.6 usecs which would more than keep up with the conversion times needed in
this system. It also has a very small form factor and it very stable.

The IDT6166 Static Ram was chosen because it is static ram. No refresh circuitry is
needed and it is very fast to access (15ns).

6

The 74HCT373 octal latch is a standard bus switching device. This version accepts TTL
level inputs and outputs CMOS level.

The 74HCT86 XOR gate was needed as a synchronous clock multiplexer needed when
driving the diode array. It is of the high speed variety which accepts TTL inputs and
outputs CMOS levels.

The Maxim Max313 is a high speed digital switch which acts as a shunt for one of the
analog amplifier stages. It too is a fast and reliable part.

Both the DS14C88 and DS14C89 are standard RS232 interface parts. They both drive
the IO signals from and to the board to the proper levels. They also provide some degree
of noise immunity. Both parts are of the CMOS variety, so they require fewer external
parts than their TTL brethren.

The TI084 quad opamp was chosen for speed, low cost, and availability. It is used for
analog signal conditioning and amplification. It is a very reliable part that has plenty of
bandwidth for this job.

The 12C509 Microchip microcontroller was chosen as a programmable PWM generator
needed to drive a servo. It only requires +5 volts and ground to operate, so it was seen as
the cleanest solution to a PWM generator. The main microcontroller communicates with
this device by simply changing the state on one of its pins. One state causes a PWM to
move the servo in one direction. The other state causes a PWM to move the servo in the
other direction.

 Software

The software for the 16C65A microcontroller can be broken down into 2 main parts.
There is a main foreground loop and an interrupt driven background loop. Essentially,
the interrupt loop runs with a 10 ms period driven by an internal timer. All data
acquisition and control is made in this loop. When a spectrum acquisition is made within
this loop, approximately 9 ms of time is used. Since this only occurs at a maximum every
200 ms, plenty of time is left over for the foreground loop.

The foreground loop runs when ever the interrupt loop is not occupied. The foreground
loop parses incoming command bytes from the RS232 port. It also checks the queue for
data that may have been written by the interrupt loop. When data is found, it is output to
the RS232 port. See Figure 3 for a pictorial representation of the 2 loops.

7

Em pty
Q ue ue

P arse r
Main Loop

Fil l
Q ue ue

G e t
Spe c tra

10 ms Interrupt
Loop

Figure 3

All software is written in Microchip assembly language. Besides normal code comments,
I have chosen to include flowcharts of all subroutines. Lets begin with the foreground
subroutine called Start. This subroutine begins by calling another subroutine called
Initialize .

Initialize is called only once when the system is turned on. It is here the 16C65A
microcontroller has its pins set for the needed input/output directions. The onboard
UART is set to 38400 baud, 8 data bits, 1 stop bit, no parity. All external devices are
disabled. All variables are cleared. Finally, Timer 1 is set to a 10 ms period which
causes an interrupt every cycle. See Figure 4.

8

Setup Input-Output
Direc tions of All

Ports

Initialize

Setup Onboard
UART

Disable All
Devices

Return

Clear All
Variables

Open Shutter & Set
Default Rate and
Exposure T im es

Setup T im er1
for 10ms
Interrupts

Enable
Interrupts

Figure 4

Returning to the Start subroutine from Initialize , a loop is entered. This loop simply
checks 2 conditions. It checks whether there has been a single byte command received on
the RS232 port. If a command has been received, the Parse subroutine is called. The
Start loop also checks if the data queue is empty or not. If the queue is not empty, data in
the queue is written to the RS232 port. Both of these conditions will be discussed in
greater length below. See Figure 5.

9

Start

Rec eived
Com m and?

Read_addr ==
W rite_addr?

Read S ram

Initialize

Output
Charac ter

Parse
Com m and

yes

no

no

yes

Figure 5

The Parse subroutine simply parses any incoming single byte command. The command
format is:

Header Data
xxx xxxxx

The upper 3 bits represent a header or type designation. Out of a possible 8 types, 7 are
used at the moment. The lower 5 bits represent data. This data has been scaled and has a
different meaning for different types.

10

The following table shows the label and binary representation for each command byte.

Command Label Header Data
Set Exposure 000 bbbbb
Set Rate 001 bbbbb
Get One Background 010 xxxxx
Open Shutter 011 xxxx0
Close Shutter 011 xxxx1
Get One Spectrum 100 xxxx0
Get Continuous Spectra 100 xxxx1
Get 24-bit Time 101 xxxxx

x - anything can go here…it is ignored by Parse.
b - scaled binary data is required here.
1 - a binary '1' is expected here.
0 - a binary '0' is expected here.

For the Set Exposure command, the following table shows the relationship between the 5
data bits and the realized engineering units.

Data Bits Time (msecs.) Data Bits Time (msecs.)
00000 10 10000 170
00001 20 10001 180
00010 30 10010 190
00011 40 10011 200
00100 50 10100 210
00101 60 10101 220
00110 70 10110 230
00111 80 10111 240
01000 90 11000 250
01001 100 11001 260
01010 110 11010 270
01011 120 11011 280
01100 130 11100 290
01101 140 11101 300
01110 150 11110 310
01111 160 11111 320

11

For the Set Rate command, the following table shows the relationship between the 5 data
bits and the realized engineering units.

Data Bits Time (msecs.) Data Bits Time (msecs.)
00000 100 10000 1700
00001 200 10001 1800
00010 300 10010 1900
00011 400 10011 2000
00100 500 10100 2100
00101 600 10101 2200
00110 700 10110 2300
00111 800 10111 2400
01000 900 11000 2500
01001 1000 xxxxx Ignore
01010 1100 xxxxx Ignore
01011 1200 xxxxx Ignore
01100 1300 xxxxx Ignore
01101 1400 xxxxx Ignore
01110 1500 xxxxx Ignore
01111 1600 xxxxx Ignore

The Parse subroutine uses a table when comparing the current received command with
that of a known command. When a command is found, the offset into that table is used to
call the appropriate subroutine via a Jmptable. When a command is not found, nothing
occurs. See Figure 6.

12

Store Byte
Rec eived

Parse

Offset = 0

Return

Is Com m and
in T able?

Offset++
no

yes

Jum p to Appropr iate
Func tion Via O ffset
T hrough Jm ptable

Figure 6

Jmptable is a subroutine that acts as function calling mechanism. At present, there are 6
active functions within Jmptable. The Exposure function is called when there is change
in the exposure time. Exposure times range from 10 ms to 320 ms in increments of 10
ms. The Rate function is called when there is a change in the output spectral rate. Rate
times range from 100 ms to 2500 ms. The Background function simply sets a flag
(back) that indicates to the Handler routine that 1 background spectrum is needed. The
Shutter routine simply checks the LSB of this command byte. If this bit is set, the
shutter is opened. If this bit is zero, the shutter is closed. The Spectra routine checks the
LSB of this command byte. If this bit is set, the spec variable is set to 1. This indicates to
the Handler routine to capture a single spectrum. If this bit is zero, the spec variable is
set to 2. This indicates to the Handler routine to capture spectra continuously at the
given Rate and Exposure. The Readtime routine sets a variable rtime to 1. This
indicates to the Handler routine to output the current 24-bit time. Finally, the Nextbyte

13

command is not implemented. It is meant as an extension to the current command set. If
and when it is implemented, it will indicate to the receiver that another command byte
follows this one different commands. See Figure 7.

J m ptab le

Return

Expos ure N extby teShutterRate Bac kground S pec tra Readtim e

Parse Data Bits
& Add 1

sexp_tim e =
Data

Parse Data Bits
& Add 1

s rate_tim e =
D ata * 10

yes

no

bac k = 1

header =
src v_byte

LS B S et?

Open

Clos e

Data <= 25?

yes

no

LS B S et?

spec =
1

spec =
2

yes

rtim e = 1

tim e_header =
s rc v_byte

no

Figure 7

The Handler routine is the heart of this data acquisition system. It is here all timing,
video clocking and digitization, and data storage is made. This routine is an interrupt
handler and has a period of 10 ms. This routine starts by clearing all interrupt flags,
incrementing the 24-bit timer variables, and decrementing the rate variable.

This routine basically has 2 parts. The left part of the flowchart only occurs when the
exposure flag is set. This flag remains set while the exposure time (exptime) counts
down. When the exposure time reaches zero, a spectrum acquisition occurs and is stored
to Sram.

14

The right part of the flowchart only occurs when the exposure flag is not set. When the
exposure flag is not set, all control variables are examined. These control variables were
discussed earlier in Jmptable.

Of special note in the Handler routine is the call to FlushCCD. This routine makes a
quick scan of the diode array. This is needed periodically so the charge on the diode array
does not continue to increase. Without this command, the bias from the diode array
would fluctuate leading to erroneous data. The call to FlushCCD_ex is made to flush
the diode array at the same exact rate as when the array is digitized and stored in SRAM.
This makes the channel to channel scan time equal. See Figure 8.

Clear INT Flags
Reload T ic T im er

24 Bittim e++
Ratetime--

Handler

F lushCCD

Expflag == 1?

Spec == 1?

Bac k == 1?

Spec == 2?

Ratetim e ==
0?

Ret

no

no

no

yes

no

no

Reset Ratetim e
Reset Exptim e

Expflag++
F lushCCD_ex

Spec = 0
Reset Exptim e

Expf lag++
FlushCCD_ex

Spec = 0
Exptim e = Max

Expflag++
Close Shutter

yes

yes

yes

Exptime == 0?

Bac k == 0?

Exptime--

Bac k = 0
Open Shutter

Expflag = 0
W rite Header

Ac quire Spec trum
W rite Spec trum

yes

no

yes

no

yes
Back == 1?

FlushCCD_ex

yes

no

Rtim e == 1?
Rtim e = 0
Send T im e

yes

no

Figure 8

15

The last 6 routines are timing critical. They must either execute their designated function
as quickly as possible or in some finite number of cycles. As mentioned above,
CCDFlush is a routine that must be called periodically. It quickly reads all 256
channels of the diode array. No data is stored. Reading each channel effectively
discharges their respective diode so it is ready to integrate photons again. Flushing the
diode is normal done before each exposure begins. It is also done periodically before the
next rate command starts up. This way, the diode array is always at some low charged
state before it is needed for an actual exposure. See Figure 9.

Channel = 0

CCD Flus h

CCD S etup

Cloc k CCD &
Channel++

Return

Zero Bit S et?
no

yes

Set CCD High

Figure 9

16

CCDFlush_ex is a routine that is called when a video exposure is started. CCDFlush_ex
is essentially an emulation routine that mimics the time necessary to digitize each channel
and then store that value to SRAM. This routine is needed so the channel to channel read
time is constant when the actual scan is made. Without this routine, later channels are
given more integration time then sooner channels…leading to a video exposure that is
unbalanced. See Figure 10.

Channel = 0

CCD Flush_ex

CCD Setup

Cloc k CCD &
Channel++

Return

Zero Bit S et?
no

yes

Set CCD High

Burn 169
cyc les

Figure 10

17

ReadADC is a routine that performs one analog to digital conversion of the video signal
coming from the diode array. This routine is hard coded to generate 13 clock cycles
which drive the MAX120 12-bit ADC chip. From the Maxim literature, this type of
conversion is considered the Slow-Memory Mode. This mode was chosen because it
requires the fewest number of control lines to the ADC. Conversion time is very fast.

Of special note in this routine is the re-arrangement of data bits after a conversion. This
is done so as to break the 12 returning bits equally into 2-6 bit bytes. The reason for this
will be explained in the section on Output Data Format. See Figure 11.

Dis able All
Devic es

ReadAD C

Set D ata Bus
(PortD) for

Reading

Start
Convers ion

Return

Close Integrator
Shunt

Open Integrator
Shunt

ReadAD C

Re-arrange
D ata Bits

D isable All
Devic es

Figure 11

18

Readsram is a routine that reads one byte from the 2k static ram. Every call to this
routine automatically increments a read pointer. This ensures the next call to this routine
will fetch the next byte in memory. This routine automatically resets the read pointer to
the sram start address when the end of memory is found. See Figure 12.

Disable All
Devic es

Readsram

Set Data Bus
(PortD) For

Reading

Get C loc k Satus
on PortA3-5

Set Address Bus
(PortB & PortA) to

Read Address ORing in
Cloc k S tatus

Return

Read Data

Inc rem ent
Read Address

D isable All
Devic es

Figure 12

19

Writesram is a routine that writes one byte to the 2k static ram. Every call to this routine
automatically increments a write pointer. This ensures the next call to this routine will
write to the next byte in memory. This routine automatically resets the write pointer to
the sram start address when the end of memory is found. See Figure 13.

Disable All
Devic es

W ritesram

Set Data Bus
(PortD) For

W ritin g

Get Cloc k Satus
on PortA3-5

Set Address Bus
(PortB & PortA) to

W rite Address ORing
in Cloc k S tatus

Return

W rite Data

Inc rem ent
W rite Address

D isable All
Devic es

Figure 13

20

Restore is a routine that restores the current read state to the 8 data I/O lines. This is
needed because the read and write lines are multiplexed and are used both in the
foreground and background routines. Essentially, this routine allows preemptive
multitasking to occur with the data lines. See Figure 14.

D isable All
Devic es

Res tore

Set Data Bus
(PortD) For

Reading

Set Address Bus
(PortB & PortA) to

Previous Read Address

Set Read-W rite Bus
(PortE) to P revious

Read S tate

Return

Figure 14

21

Source Code

;---
; Adas18.asm
; This version attempts to exercise all devices while using
; the interrupt timer. A 12-bit AD conversion occurs
; every 10 msec and 2 bytes are written to the SRAM within
; the interrupt loop. The foreground loop 'chases' the
; write pointer and reads data out of the SRAM. The
; foreground loop then sends this data out the serial port.
; This version adds on to the work done by 'adas11.src' by
; checking the UART receiver for any data (single byte
; commands).
;
; This particular version has been altered to drive the
; actual CCD device (spectrometer).
;
; This version (adas17.asm) has been modified to make upper
; 2 bits of data words always '11'. To do this, I had to
; shift contents of 'adc_low' and 'adc_high' so each carries
; 6 bits. This was done as a quick means of data
; syncronization because command words NEVER have upper 2
; bits set.
;
; This version also implements the output of 24 bit time
; with a 10 msec resolution. Output is in 4 bytes with
; 6 bits of data each. Top 2 bits marked 1's to indicate
; data bytes. This is our current convention.
;
; This version creates a new CCD Flush routine called
; ccdflush_ex for 'exact'. The purpose of this routine is
; to flush the CCD at the saime exact rate as when the CCD
; is actually read and stored into SRAM. This routine has
; been written to eliminate the non-uniform bias across all
; all channels due to the original method of flushing the
; CCD faster than it is scanned.
;---
; Steven A. Bailey NASA 4/7/98
;---

list p=16c65a, r=dec ; Define processor and 'dec' numbers
; as default

include <p16c65a.inc> ; Processor specific defines
include <pxmacs.inc> ; Parallax 'like' macros

; These are the configuartion bits
; found in 'p16c65a.inc'.

__config _HS_OSC & _WDT_OFF & _PWRTE_ON & _CP_OFF & _BODEN_ON

;---
; Program defines
;---

#define SPBRG_VAL 7 ; Baud Rate = low
; SPBRG_VAL = (FOSC - BAUDRATE*64)
; --------------------
; (BAUDRATE*64)
;
; For 38.4 Kbaud:

22

; SPBRG_VAL = (20,000,000 - 38400*64)
; -----------------------
; (38400*64) = 7

#define LOW_TIME 0xb9 ; Low byte of startup time
#define HIGH_TIME 0x3c ; High byte of startup time

; Since this is a count-up timer
; 10000h - 03cb0h = 0c350h or 50000
; Since a timer tic is 200 ns, then
; 50000 x 200 ns = 0.01 secs between
; interrupts. I added 9 to calculated
; value because it takes 9 cycles to
; get to handler after interrupt. This
; was determined using simulator

#define MAX_EXP 200 ; This is time (2000 ms.) needed to
; allow shutter to close to taking 1
; background exposure.

#define CCD_OSTART PORTA,3 ; CCD start (OSTART) pin
#define CCD_OCLOCK PORTA,5 ; CCD clock (OCLOCK) pin
#define CCD_INTEG PORTC,4 ; CCD integrator reset pin
#define ADC_CS PORTC,3 ; ADC chip select (CS) pin
#define ADC_INT PORTC,1 ; ADC INT/BUSY pin
#define ADC_CLKIN PORTC,0 ; ADC CLKIN pin
#define LATCH_EN PORTC,5 ; Latch chip enable pin
#define PWM PORTC,2 ; PWM toggle for P12C509
#define SRAM_CS PORTE,2 ; SRAM chip select (CS) pin
#define SRAM_RD PORTE,1 ; SRAM read select (RD) pin
#define SRAM_WR PORTE,0 ; SRAM write select (WR) pin

;---
; Variables in RAM
;---
; A more consistant way to define RAM is to use the 'org' statement
; followed by variables using the 'res' directive. However, the RAM
; window of 'MPLAM' does not display variables defined this way...hence
; we are using the 'equ' directive followed by the address in the
; register map they are located.
;---
; org 0x20 ; Start of RAM in 16c65a
;
;var1 res 1 ; Examples using 'res'
;var2 res 1
;---

rhigh_addr equ 0x20 ; Read high address byte
rlow_addr equ 0x21 ; Read low address byte
whigh_addr equ 0x22 ; Write high address byte
wlow_addr equ 0x23 ; Write low addequs byte
rdata equ 0x24 ; Read data byte
wdata equ 0x25 ; Write data byte
xmt_byte equ 0x26 ; Byte out to serial port
rcv_byte equ 0x27 ; Byte in from serial port
srcv_byte equ 0x28 ; Save byte from serial port
ones equ 0x29 ; Used for sending BCD
tens equ 0x2a ; Used for sending BCD
hunds equ 0x2b ; Used for sending BCD
adc_low equ 0x2c ; ADC low byte
adc_high equ 0x2d ; ADC high byte
rate_time equ 0x2e ; 8-bit rate timer

23

exp_time equ 0x2f ; 8-bit exposure timer
seconds equ 0x30 ; Our seconds timer
w_copy equ 0x31 ; Used for stack manipulation
s_copy equ 0x32
read_state equ 0x33 ; Current state of read bits
offset equ 0x34 ; Table offset
element equ 0x35 ; Returned table element
srdata equ 0x36 ; Save of rdata
temp equ 0x37 ; Temp variable
time_low equ 0x38 ; These 3 for main timer
time_mid equ 0x39
time_high equ 0x3a
spec equ 0x3b ; Flag for 1spec, specs, or 1back
channel equ 0x3c ; Channel number of spectrometer
exp_flag equ 0x3d ; Exposure flag
back equ 0x3e ; Background flag
srate_time equ 0x3f ; Save rate time
sexp_time equ 0x40 ; Save exposure time
header equ 0x41 ; Header for return record
clocks equ 0x42 ; Store state of 2 clock lines
wtemp equ 0x43 ; Write temp variable
rtemp equ 0x44 ; Read temp variable
temp_time equ 0x45 ; This is just for testing
rtime equ 0x46 ; This is the read time flag
time_header equ 0x47 ; This is storage for readtime header
t_high equ 0x48 ; Temp storage of high time
t_mid equ 0x49 ; Temp storage of mid time
t_low equ 0x4a ; Temp storage of low time
extra equ 0x4b ; Extra byte for output time
burn_cnt equ 0x4c ; Burn count variable
;---
; On startup, the PIC looks at address 0 for its first
; instruction. Since the interrupt handler begins at
; address 4, we'll just jump over it to get to the
; startup routine.
;---

 org 0 ; startup vector location
 jmp start ; Beginning of main program.

;---

; Next is the interrupt handler, which must begin at
; addequs 4. This handler copies equtoequ w and the status
; register. Because a normal "mov w,fr" alters the z bit of
; the status register, this routine uses "mov w,<>fr," which
; does not. The routine actually swaps the byte twice,
; equulting in the correct value being written to w without
; affecting the z bit. This routine is setup to be called
; every msec.
;---

org 4 ; Interrupt vector location
jmp handler ; Go to timer1 interrupt routine

;---
; Here's the startup routine and the main program loop.
; In the line that initializes "intcon," bit 7 is GIE and bit 5
; is RTIE. Writing 1s to these enables interrupts generally (GIE)
; and the RTCC interrupt specifically (RTIE).
;---

24

start
call initialize ; Initialize CPU

mainloop
snb PIR1,RCIF ; Skip if Receiver not ready
call parse ; Parse command from serial port
cjne_ff rlow_addr,wlow_addr,output ; Read SRAM if NOT equal
cjne_ff rhigh_addr,whigh_addr,output ; Read SRAM if NOT equal
jmp mainloop

output
call readsram
mov_ff xmt_byte,rdata ; Load xmt_byte with rdata
call sendchar ; Send binary data
jmp mainloop

;---
; Here's our interrupt timer routine.
; In the line that initializes INTCON, bit 7 is GIE and bit 6
; is PEIE. At the moment, the interrupt handler is being called
; every 10 ms or at a 100 Hz rate.
; From call to return, this function takes 44975 cycles (worst case) or
; 8.99 msecs. This worst case occurs at most, once every 200 msecs...or
; once every 20 calls to this interrupt handler.
; Average number of cycles used in this function when not writing data
; is 133 cycles or 26.6 usecs.
;---

handler
clrb STATUS,RP0 ; Switch to Memory Bank 0
clrb PIR1,TMR1IF ; Clear TRM1 interrupt flag

 mov_fw w_copy,w ; Make a copy of w.
 mov_ff s_copy,STATUS ; Make a copy of status.

mov_fl TMR1L,LOW_TIME ; Load low byte of TMR1
mov_fl TMR1H,HIGH_TIME ; Load high byte of TMR1

inc time_low ; This is our main 24 bit timer
snz ; Resolution is 10 msec giving
inc time_mid ; timer range 2^24 * 10 msec
snz ; or 167772 secs or 46.6 hours
inc time_high

dec rate_time ; This timer used for rate.

cje_fl exp_flag,1,checkexp ; If exp_flag == 1, then checkexp

call ccdflush ; If not exposing, must clear CCD
; Takes approx. 310 usec

cjne_fl rtime,1,ckspec ; Jmp if rtime not set to 1
clr rtime ; Zero rtime flag
call sendtime ; Send out time

ckspec
cjne_fl spec,1,ckback ; Jmp if spec not set to 1
clr spec
inc exp_flag
mov_ff exp_time,sexp_time ; Restore exposure time
call ccdflush_ex ; Flush ccd by reading it…exact time
jmp cont

ckback

25

cjne_fl back,1,ckspecs ; Jmp if back not set to 1
call closeshut ; Close shutter
inc exp_flag
clr spec ; Make sure only 1 spectrum
mov_fl exp_time,MAX_EXP ; Set to MAX exposure time
jmp cont

ckspecs
cjne_fl spec,2,cont ; Exit ISR if spec != 2
cjne_fl rate_time,0,cont ; If rate_time not zero, then cont
inc exp_flag
mov_ff rate_time,srate_time ; Restore rate time
mov_ff exp_time,sexp_time ; Retore exposure time
call ccdflush_ex ; Flush ccd by reading it…exact time
jmp cont

checkexp
cjne_fl back,1,ckexp ; Jump if back not set to 1
call ccdflush_ex ; Flush ccd by reading it…exact time

ckexp
dec exp_time ; Decrement exp_time
jnz cont ; Jmp to cont if not zero

clr exp_flag ; Reset exposure flag

mov_ff wdata,header ; Received command is packet header
call writesram
call ccdsetup ; Setup CCD for a read
clrb CCD_INTEG ; Open up integrator shunt

adc_loop
setb CCD_OCLOCK ; Clock CCD
clrb CCD_OCLOCK

call readadc ; Read ADC
mov_ff wdata,adc_low ; Get lower 8 bits
call writesram ; Write to SRAM
mov_ff wdata,adc_high ; Get upper 4 bits
call writesram ; Write to SRAM
inc channel
jnb STATUS,Z,adc_loop ; If Z not set, get next channel

setb CCD_OCLOCK ; Get ready for next spectrum
setb CCD_INTEG ; Zero integrator

cje_fl back,0,cont ; If back = 0, then jmp to cont
clr back ; Clear background
call openshut ; Open shutter

cont
call restore ; restore state of possible read

 mov_ff STATUS,s_copy ; restore status register
 restw w_copy ; restore w without affecting STATUS
 ; bits
 reti

;---
; Restore current state of possible read
; From call to return, this function takes 27 cycles or 5.4 usecs.
;---

26

restore
call disable ; Disable all devices

setb STATUS,RP0 ; Switch to Memory Bank 1
mov_fl TRISD,11111111b ; Make rd0-7 inputs
clrb STATUS,RP0 ; Switch to Memory Bank 0

mov_ff PORTB,rlow_addr ; Store low address

mov_ff rtemp,PORTA ; Need to get state of port
and_fl rtemp,00111000b ; Need bits 3-5
or_ff rtemp,rhigh_addr ; OR in high address
mov_ff PORTA,rtemp ; Restore read state

mov_ff PORTE,read_state ; Done this way for interrupts

return

;--
; sendchar to serial port
; From call to return, this function takes 8 cycles (best case) or
; 1.6 usec. Worst case dependant on baud rate.
;--

sendchar
sb PIR1,TXIF ; Skip if PIR1,TXIF bit set
jmp sendchar

mov_ff TXREG,xmt_byte ; Now...transmit xmt_byte

return ; Return to caller

;--
; writesram writes to SRAM given:
;
; high_addr - upper 4 bits
; low_addr - lower 8 bits
; data - 8 bits
;
; This routine has been altered so an equal number of cycles are used
; each time this routine is called...regardless of weather jmps are
; made during the 2 comparisons.
;
; From call to return, this function takes 49 cycles or 9.8 usecs.
;--

writesram
call disable ; Disable all devices

setb STATUS,RP0 ; Switch to Memory Bank 1
mov_fl TRISD,00000000b ; Make rd0-7 outputs
clrb STATUS,RP0 ; Switch to Memory Bank 0

mov_ff PORTB,wlow_addr ; Store low address

mov_ff wtemp,PORTA ; Need to get state of port
and_fl wtemp,00111000b ; Just need bits 3-5
or_ff wtemp,whigh_addr ; OR in write address

mov_ff PORTA,wtemp ; Store high address

27

nop ; Need a 200 ns delay
mov_ff PORTD,wdata ; Store data
mov_fl PORTE,00000001b ; Set WR,CS on & RD off

inc wlow_addr
cjne_fl wlow_addr,0,not_low
inc whigh_addr
cjne_fl whigh_addr,8,not_high
clr whigh_addr ; Finished writing 2K SRAM

not_high
clr wlow_addr ; 1 cycle used..this already 0

ret_write
call disable ; Disable all devices
return ; Return to caller

not_low ; Need to burn 6 cycles
nop
nop
nop
nop
jmp ret_write

;--
; readsram reads from SRAM given:
;
; high_addr - upper 4 bits
; low_addr - lower 8 bits
; data - 8 bits
;
; From call to return, this function takes 53 (worst case) or
; 10.6 usecs.
;--

readsram
call disable ; Disable all devices

setb STATUS,RP0 ; Switch to Memory Bank 1
mov_fl TRISD,11111111b ; Make rd0-7 inputs
clrb STATUS,RP0 ; Switch to Memory Bank 0

mov_fl read_state,00000010b ; Set RD,CS on & WR off
mov_ff PORTB,rlow_addr ; Store low address

mov_ff rtemp,PORTA ; Need to get state of port
and_fl rtemp,00111000b ; Just need bits 3-5
or_ff rtemp,rhigh_addr ; OR in read address
mov_ff PORTA,rtemp ; Store high address

mov_ff PORTE,read_state ; Done this way for interrupts
nop ; Need a 200 ns delay
mov_ff rdata,PORTD ; Read data from PORTD

inc rlow_addr
cjne_fl rlow_addr,0,ret_read
inc rhigh_addr
cjne_fl rhigh_addr,8,ret_read
clr rlow_addr ; Finished reading 2k SRAM
clr rhigh_addr

ret_read

28

call disable ; Disable all devices
mov_fl read_state,00000100b ; Set CS off within read_state
return ; Return to caller

;---
; Flush CCD.
; From call to return, this function takes 1551 cycles (worst case) or
; 310.2 usecs.
;---

ccdflush
clr channel
call ccdsetup
setb CCD_INTEG ; Zero integrator whole scan

flush_loop
setb CCD_OCLOCK
clrb CCD_OCLOCK
inc channel
jnb STATUS,Z,flush_loop ; If Z not set, get next

; channel

setb CCD_OCLOCK ; Get ready for next spectrum

return
;---
; Flush CCD Exact.
; From call to return, this function takes 44814 cycles (worst case) or
; 8.96 msecs. This function emulates the time it takes to scan,
; digitize, and store digitial data in SRAM.
;---

ccdflush_ex
clr channel
call ccdsetup
setb CCD_INTEG ; Zero integrator whole scan

burn_loop ; Each scan takes 35 usecs.
setb CCD_OCLOCK
clrb CCD_OCLOCK
call burn_169 ; Burn 169 cycles
inc channel
jnb STATUS,Z,burn_loop ; If Z not set, get next

; channel

setb CCD_OCLOCK ; Get ready for next spectrum
setb CCD_INTEG ; Zero integrator

return

;---
; Burn 169.
; From call to return, this function takes 169 cycles or 33.8 usecs.
; This function 'burns' off 169 cycles to emulate ADC and SRAM storage
; routines.
;---

burn_169
mov_fl burn_cnt,40 ; Set burn count variable

; Causes 160 cycles within
; loop

29

burn_lp
dec burn_cnt ; Takes 1 cycle
jnb STATUS,Z,burn_lp ; Takes 3 cycles when jmp
nop ; Add extra cycle when 0

; reached

nop ; Filler to equal 169 cycles
nop
nop

return

;---
; Setup CCD device for a scan.
; From call to return, this function takes 11 cycles (2.2 usec).
;---

ccdsetup
clrb CCD_OCLOCK ; This sets clock 1 low and

; sets clock 2 high due to
; inverter.

setb CCD_OSTART ; Give a start pulse
clrb CCD_OSTART

setb CCD_OCLOCK ; Need 2 clock cycles
clrb CCD_OCLOCK
setb CCD_OCLOCK
clrb CCD_OCLOCK

return

;---
; Read ADC and put low byte in 'adc_low' and high byte in 'adc_high'
; This uses the Slow-Memory Mode.
; From call to return, this function takes 67 cycles or 13.6 usecs.
;---

readadc
call disable ; Disable all devices

setb STATUS,RP0 ; Switch to Memory Bank 1
mov_fl TRISD,11111111b ; Make rd0-7 inputs
clrb STATUS,RP0 ; Switch to Memory Bank 0

clrb ADC_CS ; Start conversion

setb ADC_CLKIN ; Create clock signals.
clrb ADC_CLKIN ; Need 13 cycles for a
setb ADC_CLKIN ; complete ADC
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN

30

clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN
setb ADC_CLKIN
clrb ADC_CLKIN

setb CCD_INTEG ; Close integrator shunt

mov_ff adc_low,PORTD ; Read data from PORTD
clrb LATCH_EN ; Enable latch
setb ADC_CS ; Disable ADC

mov_ff adc_high,PORTD ; Read data from PORTD

rl adc_low ; Shift upper bit into C
rl adc_high ; Shift C into lower bit
rl adc_low ; Shift upper bit into C
rl adc_high ; Shift C into lower bit
rr adc_low ; Restore position
rr adc_low ; Restore position

or_fl adc_low,11000000b ; Set upper 2 bits
or_fl adc_high,11000000b ; Set upper 2 bits

call disable ; Disable all devices

clrb CCD_INTEG ; Open integrator shunt

return

;---
; Disable ADC, latch, and SRAM.
; From call to return, this function takes 7 cycles.
;---

disable
setb LATCH_EN ; Disable or flush latch & put

; in high impedance state
setb SRAM_CS ; Turn SRAM CS off
setb ADC_CS ; Turn ADC CS off

return

;---
; Initialize serial port and variables
; From call to return, this function takes 70 cycles or 14 usecs.
;---

initialize
setb STATUS,RP0 ; Switch to Memory Bank 1

mov_fl TRISA,00000000b ; Make ra0-7 outputs
mov_fl TRISB,00000000b ; Make rb0-7 outputs
mov_fl TRISC,10000010b ; Make rc1 & rc7 pins inputs
mov_fl TRISD,00000000b ; Make rd0-7 outputs

31

mov_fl TRISE,00000000b ; Make re0-7 outputs

mov_fl SPBRG,SPBRG_VAL ; Set baud rate generator
mov_fl TXSTA,00100000b ; Trans enable, 8-bits, async,

; baud low
mov_fl PIE1,00000001b ; Enable TMR1 interrupt on

; overflow

clrb STATUS,RP0 ; Switch to Memory Bank 0

call disable ; Disable all devices

clr rhigh_addr ; Zero variables
clr rlow_addr
clr wlow_addr
clr whigh_addr
clr rdata
clr wdata
clr adc_low
clr adc_high
clr seconds
clr offset
clr time_low
clr time_mid
clr time_high
clr spec
clr back
clr channel
clr exp_flag
clr temp_time
clr rtime

clrb PWM ; Clear PWM toggle (open
; shutter)

mov_fl rate_time,100 ; Equivalent rate_time of 1000
; msec

mov_fl srate_time,100
mov_fl exp_time,1 ; Equivalent exp_time of 10

; msec
mov_fl sexp_time,1

mov_fl read_state,00000100b ; Make sure CS of read_state
; is off

mov_fl RCSTA,10010000b ; Serial port enable
mov_ff rcv_byte,RCREG ; Clear out receive buffer

mov_fl TMR1L,LOW_TIME ; Load low byte of TMR1
mov_fl TMR1H,HIGH_TIME ; Load high byte of TMR1
mov_fl T1CON,00000001b ; Turn TMR1 on
mov_fl INTCON,11000000b ; Enable Global and Peripheral

; Interrupts

return ; Return to caller

;---
; Sendtime command outputs 24 bit time to serial port
; From call to return, this function takes 293 cycles (58.6 usec).
;---

sendtime

32

mov_ff t_high,time_high ; Make copy of time_high
mov_ff t_mid,time_mid ; Make copy of time_mid
mov_ff t_low,time_low ; Make copy of time_low

mov_ff extra,t_high ; Times copies upper 6 bits of
; t_high

rr extra ; Only want 6 bits
rr extra
or_fl extra,11000000b ; Mask off upper bits (data bits)

rl t_mid ; Rotate upper 4 bits of t_mid to
; t_high

rl t_high
rl t_mid
rl t_high
rl t_mid
rl t_high
rl t_mid
rl t_high
or_fl t_high,11000000b ; Mask off upper bits (data bits)

mov_ff t_mid,time_mid ; Restore t_mid
rl t_low ; Rotate upper 2 bits of t_low to

; t_mid
rl t_mid
rl t_low
rl t_mid
or_fl t_mid,11000000b ; Mask off upper bits (data bits)

mov_ff t_low,time_low ; Restore t_low
or_fl t_low,11000000b ; Mask off upper bits (data bits)

mov_ff wdata,time_header ; Get ready to write data header
call writesram
mov_ff wdata,t_low ; Get ready to write low byte
call writesram
mov_ff wdata,t_mid ; Get ready to write mid byte
call writesram
mov_ff wdata,t_high ; Get ready to write high byte
call writesram
mov_ff wdata,extra ; Get ready to write extra byte
call writesram

return

;---
; Parse command from input from serial port
; From call to return, this function takes 215 cycles (worst case) or
; 43 usecs.
;---

parse
mov_ff rcv_byte,RCREG ; Read byte from serial port
mov_ff srcv_byte,rcv_byte; Save rdata
and_fl rcv_byte,11100000b; Only look at upper 3 bits
clr offset ; Start at top of table

ploop
mov_fl PCLATH,HIGH table ; Get high address of table
mov_wf w,offset ; Load w with lower 8 bits

33

call table ; Get next table entry
mov_fw temp,w
mov_fl PCLATH,HIGH ploop ; Restore current high address

and_fl temp,11100000b ; Only look at upper 3 bits
cje_ff temp,rcv_byte,match ; Found a match

inc offset
cjb_fl offset,7,ploop ; Continue loop if < 7

return

match
mov_wf w,offset
call jmptable

return

;---
; Jmp Table
; From call to return, this function takes 25 cycles (worst case) or
; 5 usecs.
;---

jmptable
add_fw PCL,w

jmp exposure ; Jmp to exposure routine
jmp rate ; Jmp to rate routine
jmp background ; Jmp to background routine
jmp shutter ; Jmp to shutter routine
jmp spectra ; Jmp to spectra routine
jmp readtime ; Jmp to readtime routine
jmp nextbyte ; Jmp to nextbyte routine

exposure
mov_ff sexp_time,srcv_byte ; Get saved rcv_byte
and_fl sexp_time,00011111b ; Remove header bits
inc sexp_time ; Remember to add one
return

rate
mov_ff temp,srcv_byte ; Get saved rcv_byte
and_fl temp,00011111b ; Remove header bits
inc temp ; Remember to add one
cja_fl temp,25,rcont ; Ignore if temp > 25
clc ; Clear carry
rl temp ; Rotate left 1 bit
mov_ff srate_time,temp ; Save rate_time
rl srate_time ; Rotate left 2 bits
rl srate_time
add_ff srate_time,temp ; Gives mult. by 10

rcont
return

background
mov_fl back,1 ; Set back flag to 1
mov_ff header,srcv_byte ; Create header
return

shutter
mov_ff rcv_byte,srcv_byte; Restore rcv_byte

34

and_fl rcv_byte,00000001b; Check LSB for openshut or
closeshut

jb STATUS,Z,openshut ; If Z set, must be openshut
closeshut

setb PWM ; Set PWM toggle pin
return

openshut
clrb PWM ; Clear PWM toggle pin
return

spectra
mov_ff rcv_byte,srcv_byte; Restore rcv_byte
mov_ff header,srcv_byte ; Create header
and_fl rcv_byte,00000001b; Check LSB for 1spec or specs
jb STATUS,Z,onespec ; If Z set, must be 1spec

specs
mov_fl spec,2 ; Set spec flag to 2
return

onespec
mov_fl spec,1 ; Set spec flag to 1
return

readtime
mov_fl rtime,1 ; Set rtime flag to 1
mov_ff time_header,srcv_byte ; Save current time header
return

nextbyte
return

;---
; Table lookup
; From call to return, this function takes 6 cycles or 1.2 usecs.
;---

org 0x800

table
add_fw PCL,w

retw 00000000b ; Exposure command
retw 00100000b ; Rate command
retw 01000000b ; Take 1 background spectrum
retw 01100000b ; Shutter command
retw 10000000b ; Spectra command
retw 10100000b ; Read time
retw 11000000b ; Next byte command

 end

35

;---
; Pwm1.asm This program accepts input control from a PIC16C65A
; and generates the appropriate PWM output on a 12C509.
; At present, only 2 PWM signals are produced. These
; 2 signals cause the servo to go from 1 side of its
; rotation path to another. The angle covered is
; approximately 110 deg.
;
; For Futaba servo control, the PWM frequency determined
; to work best is 50 Hz (20 msec period).
;
; The shortpulse signal is ON 200 usec and OFF 19800 usec.
; This is a duty cycle of 1%
;
; The longpulse signal is ON 1500 usec and OFF 18500 usec.
; This is a duty cycle of 8%
;---
; Steven A. Bailey NASA 3/19/98
;---

list p=12c509, r=dec ; Define processor and 'dec'
; numbers as default

include <p12c509.inc> ; Processor specific defines
include <pxmacs5x.inc> ; Parallax 'like' macros

; These are the configuration
; bits found in 'p12c509.inc'.

__config _IntRC_OSC & _WDT_OFF & _MCLRE_OFF & _CP_OFF

;---
; Program defines
;---

#define PWM_INPUT GPIO,3 ; PWM control from p16c65a
#define PWM_OUTPUT GPIO,1 ; PWM output from p12c5xx

;---
; Variables in RAM
;---

pulse_low equ 0x07 ; Pulse low width
pulse_high equ 0x08 ; Pulse high width
cycle_low equ 0x09 ; Remaining cycle low width
cycle_high equ 0x0a ; Remaining cycle high width

;---
; On startup, the PIC12C509 looks at address 0 for its first
; instruction. No interrupts to worry about, because they don't exist
; on this chip.
;---

 org 0 ; startup vector location

clrb STATUS,PA0 ; Make sure using Memory Bank 0
tris_l 00001000b ; Make gp3 an input & gp5,4,2,1,0

; outputs
clr GPIO

mainloop

36

jb PWM_INPUT,longpulse ; If pin level high, then do
longpulse

setb PWM_OUTPUT ; else do shortpulse
call usec200 ; Pulse on 200 usec
clrb PWM_OUTPUT

call usec1000 ; Pulse off total of 19800 usecs
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec200
call usec200
call usec200
call usec200
jmp mainloop

longpulse
setb PWM_OUTPUT
call usec1000 ; Pulse on 1500 usec
call usec200
call usec200
call usec100
clrb PWM_OUTPUT

call usec1000 ; Pulse off total of 18500 usecs
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec1000
call usec200
call usec200
call usec100
jmp mainloop

37

;--
; This routines burns off time...remember, only a 2 level stack with
; the PIC12C509.
;--

usec1000 ; Burn off 1000 usec
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

38

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec6
return

usec200 ; Burn off 200 usec
call usec10
call usec10
call usec10

39

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10

call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec6
return

usec100 ; Burn off 100 usec
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec10
call usec6
return

usec10 ; Burn off 10 usec.
nop ; Note...it takes 4 usec to call & return
nop
nop
nop
nop
nop
return

usec6 ; Burn off 6 usec.
nop ; Note...it takes 4 usec to call & return
nop
return

end

40

Schematics

1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

8
A07
A16
A25
A34
A43
A52
A61
A723
A822
A919
A10

20
OE 21
WE 18
CS

9
D0 10
D1 11
D2 13
D3 14
D4 15
D5 16
D6 17
D7

1
2

G
N
D

2
4

V
C
C

U3

IDT6116SA

2
V
S
S

3
V
D
D

4
AIN

5
VREF6
AGND

7
D11

8
D10

9
D9

10
D8

11
D7

13
D6

14
D5

15
D4

16
D3

17
D2

18
D1

19
D0

20
CONVST1
MODE

21
CLKIN

22
INT/BUSY

23
CS

24
RD

12
DGND

U2

MAX120

-12

+5

+5

DGND

DGND

DGND

AGNDAGND

Y1
20 Mhz

C1 18 pf

C2 18 pf

C3 .1 uf

+5

C4

.1 uf

C5

.1 uf

C6

10 uf

C7

10 uf

C8

22 uf

C9

.1 uf

DGND

R1

5

1
OC

11
LE

3
D04
D17
D28
D313
D414
D517
D618
D7

2
Q0 5
Q1 6
Q2 9
Q3 12
Q4 15
Q5 16
Q6 19
Q7

2
0

V
C
C

1
0

G
N
D

U4

74HC373

8
RD 9
WR 10
CS

33
RB0 (A0) 34
RB1 (A1) 35
RB2 (A2) 36
RB3 (A3) 37
RB4 (A4) 38
RB5 (A5) 39
RB6 (A6) 40
RB7 (A7) 2
RA0 (A8) 3
RA1 (A9) 4

RA2 (A10)

19
RD0 (D0) 20
RD1 (D1) 21
RD2 (D2) 22
RD3 (D3) 27
RD4 (D4) 28
RD5 (D5) 29
RD6 (D6) 30
RD7 (D7)

13
OSC114
OSC21
MCLR

5
RA36
RA47
RA5

15
RC016
RC117
RC218
RC323
RC424
RC525
RC6 / TX26
RC7 / RX

3
1

G
N
D

1
2

G
N
D

3
2

V
C
C

1
1

V
C
C

U1

PIC16C65A
+5

DGND

C10 .1 uf

+5

DGND

C11 .1 uf

TX

RX

PWM TOGGLE

OSTART

OCLOCK

INTEG TOGGLE

Digital1

D:\SOURCE\Ivex\spec0_sub_digital1.sch

VIDEO

Analog

D:\SOURCE\Ivex\spec0_sub_analog.sch

AGND

Creation Date:

Designed By:

Filename:

Revision:

ADAS Spectrometer

NASA/WFF

Steven A. Bailey

03/05/98 1.0

Observational Science Branch
Wallops, VA 23337
757-824-1429

spec0_root_digital0.sch

Figure 15

41

1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

OSTARTOCLOCK

PWM TOGGLE

TX

RX

INTEG TOGGLE

DGND

+5

DGND

+5

+5

DGND

Theta 1

Theta 2

1
-V

1
4

+
V

2
INPUT A3
OUTPUT A

4
INPUT B15
INPUT B26
OUTPUT B

7
G
N
D

8
OUTPUT C

9
INPUT C1

10
INPUT C2

11
OUTPUT D

12
INPUT D1

13
INPUT D2

7
G
N
D

U8

DS14C88

1
INPUT A2
NC3
OUTPUT A

4
INPUT B5
NC6
OUTPUT B

8
OUTPUT C

9
NC

10
INPUT C

11
OUTPUT D

12
NC

13
INPUT D

1
4

V
C
C

7
G
N
D

U9

DS14C89

1
V
C
C

8
G
N
D

7
GP0 6
GP1 5
GP2 4
GP3 3
GP4 2
GP5

U7

PIC12C509

6
V
S
U
B

8
R
G
A
T
E

1
0

R
D
R
A
IN

1
7

V
S
U
B

2
0

G
N
D

4
V
D
D
G

1
3

V
C
C

21
CLK119
CLK222
START

11
AVIDEO 12
DVIDEO

U6

RL0256TB

AGND

C12 .1 uf

DGND

ACTIVE VIDEO

DUMMY VIDEO

Analog

D:\SOURCE\Ivex\spec0_sub_analog.sch

C13 .1 uf

DGND

C14 .1 uf

DGND

PWM OUT

+5
+5

+5

+12

-12 DGND

C15 .1 uf

C16 .1 uf

DGND

C17 .1 uf

DGND

+5

DGND

+5

+12

-12

DGND

P3 Transmit RS-232

P2 Receive RS-232

P1 Signal Ground

P4 Servo Power

P5 Servo PWM

P6 Servo Ground

DGND

P8 Incoming Ground

P10 Incoming +12v

P11 Incoming -12v

P9 Incoming +5v

1
IN

1
3

+
V

4
-V

2
COM

3
NO

1
2

V
C
C

5
G
N
D

5
G
N
D

U10A

MAX313

-12

+12 +5

C20
.1 uf

DGND

C19

.1 uf

C18
.1 uf

DGND DGND

SHUNT2

SHUNT1

Analog

D:\SOURCE\Ivex\spec0_sub_analog.sch

1

2
3

1
4

7

U5A

74HCT86

4

5
6

1
4

7

U5B

74HCT86

AGND

P7 Incoming Ground

Creation Date:

Designed By:

Filename:

Revision:

ADAS Spectrometer

NASA/WFF

Steven A. Bailey

03/18/98 1.0

Observational Science Branch
Wallops, VA 23337
757-824-1429

spec0_sub_digital1.sch

Figure 16

42

1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

ACTIVE VIDEO

DUMMY VIDEO

VIDEO

SHUNT1

SHUNT2

R2
200

R3
200

+12

-12

R6
100 k

R5
100 k

R7
8.2 k

-12

+12

C23
1500 pf

Differential Current Amplifier Integrator

R8
8.2 k

R9
100

-12

+12

R10
10 k

Voltage Amplifier & Bias Remover

R4
10 k

+5
R11
10 k

-12

+12

-12

+12

R13
10 k

10x Amplifier

Integrated Video Out

R14
100 k

AGND AGND

AGND

R12
100 k

C21
.1 uf

C22
.1 uf

AGND

AGND

3

2
1

4

1
1

U11A

TL084

5

6
7

4

1
1

U11B

TL084

10

9
8

4

1
1

U11C

TL084

12

13
14

4

1
1

U11D

TL084

Creation Date:

Designed By:

Filename:

Revision:

ADAS Spectrometer

NASA/WFF

Steven A. Bailey

02/18/98 1.0

Observational Science Branch
Wallops, VA 23337
757-824-1429

spec0_sub_analog.sch

Figure 17

43

Analog Section

The following is a scope snapshot of two signals from the analog portion of our circuit.
The top trace (signal 1) is our video start pulse which is found on Pin 5 of U1 or Pin 22 of
U6. It is approximately 200 ns in width and occurs once at the beginning of video
acquisition.

The bottom trace (signal 2) is channel 1 of our 256 channel video signal. It occurs
approximately 1.5 usec after our start signal. Signal 2 can be found on Pin 1 of U11.
This is the output from our first analog stage. This stage is a differential current
amplifier. Take notice that the video signal (signal 2) is approximately 2.6 usec in width.

Figure 18

44

The following is a scope snapshot which shows the relationship between 2 adjacent video
signals. Again, signal 1 is our video start pulse. Signal 2 is our video signal spaced to
show 2 successive video channels. Channel spacing is approximately 35 usec. This
means a full acquisition of 256 channels should take 35 x 256 = 8.96 msec. Take note
that is acquisition speed is based on scanning each channel, performing a 12 bit ADC,
and saving this digital value to SRAM.

Figure 19

45

The following is a scope snapshot which shows the relationship between the raw video
signal and the integrated signal. Signal 2 is our video signal coming off of Pin 1 of U11.
Signal 1 is our integrated signal from Pin 7 of U11. This is our second stage, so the
signal is low level at 50 mv/div. The 3 noise spikes surrounding the signal are caused by
the integrating shunt caused by U10. This is normal and does not affect our A/D sample.

Figure 20

46

The following is a scope snapshot which shows the relationship between the raw video
signal and the final integrated signal. Signal 2 is our video signal coming off of Pin 1 of
U11. Signal 1 is our integrated signal from Pin 14 of U11. This is our fourth stage, so
the signal is high level at 5 v/div.

Figure 21

47

The following is a scope snapshot which shows the relationship between the integrated
video signal and the integration shunt. Signal 1 is our integrated signal from Pin 14 of
U11. Signal 2 is the TTL shunt signal arriving on Pin 1 of U10. When this signal is high,
the shunt is ON and the current integration signal across C23 is grounded.

Figure 22

48

The following is a scope snapshot which shows the relationship between the integrated
video signal and the integration shunt signal. Signal 1 is our integrated signal from Pin
14 of U11. Signal 2 is the TTL shunt signal arriving on Pin 1 of U10. This figure differs
from the previous figure in that the entire video frame is captured here. As expected, our
video frame is approximately 9 ms in width. Also, since our light source for this test was
an LED shining equally across all channels…the signal is equal for all channels.

Figure 23

49

The following figure is the digital display of the video signal from the previous figure.
This signal was digitized with the said 12-bit A/D, buffered, and sent to a host PC via RS-
232. There is an apparent roll-off at the edges which is probably due to reflections at
each end of the diode array. This aberration should vanish when a diffuser is placed over
the diode array.

Figure 24

50

The following is a scope snapshot which shows the relationship between the integrated
video signal and the integration shunt signal. Signal 1 is our integrated signal from Pin
14 of U11. Signal 2 is the TTL shunt signal arriving on Pin 1 of U10. This figure differs
from the previous figure in that only ~10 channels of the entire video frame are captured.

Figure 25

51

The following figure is the digital display of the video signal from the previous figure.
This signal was digitized with the said 12-bit A/D, buffered, and sent to a host PC via RS-
232.

.

Figure 26

52

The following is a scope snapshot which shows the relationship between the integrated
video signal and the integration shunt signal. Signal 1 is our integrated signal from Pin
14 of U11. Signal 2 is the TTL shunt signal arriving on Pin 1 of U10. This figure differs
from the previous figure in that only ~2 channels of the entire video frame are captured.

Figure 27

53

The following figure is the digital display of the video signal from the previous figure.
This signal was digitized with the said 12-bit A/D, buffered, and sent to a host PC via RS-
232.

Figure 28

54

Analog Tuning

The following scope snapshot is from Pin 1 of U11. This is output from the first stage of
our analog conditioning circuit. First, set the ground level of your scope so trace 1 is at
the center line of the scope. Now, with DC coupling and triggering on channel 1 with
negative slope, adjust R4 until the baseline of the video is on the scope center line. It
should look like the figure below.

Figure 29

55

The following scope snapshot is from Pin 14 of U11. This is output from the fourth stage
of our analog conditioning circuit. There are 2 adjustments here. Use R11 to adjust the
bias of this signal. Move this signal up or down until its baseline is on the scope
centerline. Now, adjust the gain of the signal using R12. You may have to re-adjust the
bias again after adjusting gain via R12.

Figure 30

56

The following scope snapshot just shows the relationship between the first and fourth
(last) stage of our analog conditioning circuit. Trace 1 is from Pin 1 of U11. Trace 2 is
from Pin 14 of U11. Take notice of the gain change between our relatively low level
video signal (trace 1) and our high level integrated video signal (trace 2).

Figure 31

57

Printed Circuit Board

The following figure is the final circuit board drawn to scale. For convenience, I have
included the top and bottom layers together. The 3 internal layers not seen are power,
digital, and analog grounds.

Figure 32

58

Spectral Output

The following figure is the spectral output of a fluorescent light taken with this new
spectrometer board. This board was mounted and tested in the original chassis.

Figure 33

